Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*E*,*E*)-*N*,*N*'-Bis(4-methoxybenzylidene)cyclohexane-1,2-diamine

Guo-Xi Wang

Department of Chemical Engineering, Anyang Institute of Technology, Anyang, 455000, People's Republic of China Correspondence e-mail: aywgx@yahoo.com.cn

Received 24 July 2008; accepted 27 July 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.066; wR factor = 0.154; data-to-parameter ratio = 19.2.

In the title compound, $C_{22}H_{26}N_2O_2$, the methoxy and the benzylidene groups are essentially coplanar, and the cyclohexane ring has a chair conformation. The two halves of the molecule are related by a twofold rotation. The crystal structure is stabilized only by van der Waals interactions.

Related literature

For the chemistry of Schiff base derivatives, see: Negm & Zaki (2008); Feng et al. (2008); Lee & Do (2007).

Experimental

Crystal data

$C_{22}H_{26}N_2O_2$	V = 1986.2 (6) Å ³
$M_r = 350.45$	Z = 4
Orthorhombic, Pccn	Mo $K\alpha$ radiation
a = 19.674 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 5.4097 (9) Å	T = 298 (2) K
c = 18.662 (3) Å	$0.35 \times 0.30 \times 0.20$ mm

Data collection

Rigaku Mercury2 diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\rm min} = 0.978, T_{\rm max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ wR(F²) = 0.154 S = 1.12 $\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$ 2262 reflections

118 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^-$

18603 measured reflections

 $R_{\rm int}=0.060$

2262 independent reflections 1588 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL .

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2089).

References

Feng, Y., Wang, C., Xu, J., Xu, L., Liao, D., Yan, S. & Jiang, Z. (2008). Inorg. Chem. Commun. 11, 549-552.

Lee, J., Kim, Y. & Do, Y. (2007). Inorg. Chem. 46, 7701-7703.

Negm, N.-A. & Zaki, M.-F. (2008). Colloid Surf. B, 64, 179-183.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1647 [doi:10.1107/S1600536808023751]

(E,E)-N,N'-Bis(4-methoxybenzylidene)cyclohexane-1,2-diamine

G.-X. Wang

Comment

In the past five years, we have focused on the chemistry of schiff-base derivatives because of their biological behaviors and their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Negm & Zaki, 2008; Feng *et al.* 2008; Lee & Do, 2007). We report here the crystal structure of the title compound, $(N^1E, N^2E)-N^1, N^2$ -bis(4-methoxybenzylidene)cyclohexane-1,2-diamine.

In the title compound (Fig.1), there is a rotation axis bisecting the molecule through the cyclohexane ring. The methoxy and the benzylidene groups are essentially coplanar, and the cyclohexane-1,2-diamine group is in the chair form. The C4=N1 bond length of 1.249 (2) Å is consistent with the value for a double bond. The crystal structure is stabilized only by van der Waals interactions.

Experimental

rac-Diaminocyclohexane (1.20 g, 10.5 mmol) and *p*-anisaldehyde (1.36 g, 10.0 mmol) were dissolved in ethanol (20 mL) under magnetic stirring. The mixture was heated to reflux for 12 h. After cooled to room temperature, the resulting content was put to a refrigerator to stand over night. Then, the precipitate was filtered off and recrystallized from ethanol affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å(aromatic), C–H = 0.98 Å(methine), 0.97 Å(methylene), C–H = 0.96 Å(methyl), with $U_{iso}(H) = 1.2U_{eq}(C \text{ except methyl C})$ and $U_{iso}(H) = 1.5U_{eq}(\text{methyl C})$.

Figures

Fig. 1. A view of the title compound with the atom numbering scheme, symmetry related atoms, (-x+1/2, -y+1/2, z) denoted by A. Displacement ellipsoids were drawn at the 30% probability level.

(E,E)-N,N'-Bis(4- methoxybenzylidene)cyclohexane-1,2-diamine

 $F_{000} = 752$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.0-27.4^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 298 (2) K

Block, colorless

 $0.35 \times 0.30 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.172 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3131 reflections

Crystal	data
Crystur	uuuu

C₂₂H₂₆N₂O₂ $M_r = 350.45$ Orthorhombic, *Pccn* Hall symbol: -P 2ab 2ac a = 19.674 (3) Å b = 5.4097 (9) Å c = 18.662 (3) Å V = 1986.2 (6) Å³ Z = 4

Data collection

Rigaku Mercury2 diffractometer	2262 independent reflections
Radiation source: fine-focus sealed tube	1588 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{max} = 27.5^{\circ}$
T = 298(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -25 \rightarrow 25$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -7 \rightarrow 7$
$T_{\min} = 0.978, \ T_{\max} = 0.985$	$l = -24 \rightarrow 24$
18603 measured reflections	

Refinement

Refinement on F^2	
Least-squares matrix: full	

 $R[F^2 > 2\sigma(F^2)] = 0.066$

 $wR(F^2) = 0.154$

S = 1.12

2262 reflections

118 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0572P)^2 + 0.4317P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13$ e Å⁻³ $\Delta\rho_{min} = -0.14$ e Å⁻³

Extinction correction: none

Special details

N1

0.0534 (9)

0.0608 (11)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z		$U_{\rm iso}$ */ $U_{\rm eq}$	
O1	0.47992 (8)	0.4625 (3)	0.410	000 (8)	0.0713 (5)	
N1	0.32205 (8)	0.3062 (3)	0.110)39 (9)	0.0558 (5)	
C5	0.36446 (9)	0.4561 (4)	0.223	382 (10)	0.0493 (5)	
C2	0.32123 (10)	0.3262 (5)	-0.02	2019 (11)	0.0629 (6)	
H2A	0.3454	0.1699	-0.02	204	0.075*	
H2B	0.3547	0.4577	-0.02	203	0.075*	
C7	0.45135 (10)	0.2643 (4)	0.290	659 (11)	0.0535 (5)	
H7	0.4827	0.1380	0.303	34	0.064*	
C4	0.32303 (10)	0.4677 (4)	0.158	823 (10)	0.0553 (5)	
H4	0.2955	0.6057	0.15	19	0.066*	
C8	0.44380 (10)	0.4485 (4)	0.347	762 (10)	0.0513 (5)	
C6	0.41180 (10)	0.2704 (4)	0.23	553 (10)	0.0539 (5)	
Н6	0.4170	0.1467	0.20	14	0.065*	
C3	0.27888 (9)	0.3439 (4)	0.047	791 (10)	0.0532 (5)	
Н3	0.2592	0.5101	0.050	06	0.064*	
C10	0.35804 (10)	0.6392 (4)	0.27	558 (11)	0.0591 (5)	
H10	0.3270	0.7666	0.268	38	0.071*	
C1	0.27826 (11)	0.3452 (4)	-0.03	8769 (11)	0.0636 (6)	
H1B	0.2587	0.5095	-0.0	908	0.076*	
H1A	0.3069	0.3204	-0.12	294	0.076*	
C11	0.52945 (14)	0.2748 (6)	0.424	442 (13)	0.0871 (8)	
H11A	0.5509	0.3076	0.469	96	0.131*	
H11B	0.5631	0.2746	0.38	72	0.131*	
H11C	0.5075	0.1164	0.420	52	0.131*	
C9	0.39688 (10)	0.6346 (4)	0.330	659 (11)	0.0595 (6)	
H9	0.3916	0.7580	0.370	08	0.071*	
Atomic displac	ement parameters	(\mathring{A}^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0718 (9)	0.0912 (12)	0.0509 (9)	0.0097 (9)	-0.0096 (7)	-0.0121 (8)

0.0532 (10)

0.0022 (8)

-0.0042(8)

-0.0036(8)

supplementary materials

C5	0.0448 (9)	0.0533 (11)	0.0497 (11)	-0.0015 (9)	0.0020 (8)	-0.0005 (9)
C2	0.0514 (11)	0.0790 (16)	0.0583 (13)	-0.0074 (10)	0.0038 (10)	0.0038 (11)
C7	0.0538 (11)	0.0521 (12)	0.0544 (11)	0.0079 (9)	0.0001 (10)	-0.0009 (9)
C4	0.0490 (11)	0.0572 (12)	0.0597 (13)	0.0051 (9)	-0.0020 (9)	0.0010 (10)
C8	0.0510 (10)	0.0593 (12)	0.0436 (10)	-0.0043 (9)	0.0035 (9)	-0.0025 (9)
C6	0.0574 (11)	0.0524 (12)	0.0518 (11)	0.0006 (9)	0.0032 (10)	-0.0101 (9)
C3	0.0528 (11)	0.0543 (12)	0.0524 (11)	0.0028 (9)	-0.0044 (9)	0.0016 (9)
C10	0.0572 (12)	0.0541 (12)	0.0661 (13)	0.0088 (10)	0.0001 (10)	-0.0060 (10)
C1	0.0680 (13)	0.0694 (14)	0.0535 (12)	-0.0003 (11)	0.0036 (10)	0.0037 (10)
C11	0.0886 (17)	0.110 (2)	0.0625 (15)	0.0236 (16)	-0.0193 (13)	0.0001 (14)
C9	0.0628 (12)	0.0580 (13)	0.0578 (13)	0.0034 (10)	0.0017 (10)	-0.0148 (10)

Geometric parameters (Å, °)

O1—C8	1.366 (2)	C4—H4	0.9300
01—C11	1.433 (3)	C8—C9	1.381 (3)
N1—C4	1.249 (2)	С6—Н6	0.9300
N1—C3	1.457 (2)	C3—C3 ⁱ	1.525 (4)
C5-C10	1.389 (3)	С3—Н3	0.9800
C5—C6	1.387 (3)	C10—C9	1.371 (3)
C5—C4	1.472 (3)	C10—H10	0.9300
C2—C3	1.523 (3)	C1—C1 ⁱ	1.516 (4)
C2—C1	1.521 (3)	C1—H1B	0.9700
C2—H2A	0.9700	C1—H1A	0.9700
C2—H2B	0.9700	C11—H11A	0.9600
С7—С6	1.380 (3)	C11—H11B	0.9600
С7—С8	1.386 (3)	C11—H11C	0.9600
С7—Н7	0.9300	С9—Н9	0.9300
C8—O1—C11	118.35 (17)	N1—C3—C2	109.88 (15)
C4—N1—C3	118.88 (17)	C3 ⁱ —C3—C2	111.46 (14)
C10—C5—C6	117.90 (18)	N1—C3—H3	108.5
C10—C5—C4	119.83 (18)	C3 ⁱ —C3—H3	108.5
C6—C5—C4	122.25 (18)	С2—С3—Н3	108.5
C3—C2—C1	112.52 (16)	C9—C10—C5	120.92 (19)
С3—С2—Н2А	109.1	C9—C10—H10	119.5
C1—C2—H2A	109.1	C5-C10-H10	119.5
С3—С2—Н2В	109.1	C1 ⁱ —C1—C2	111.22 (15)
С1—С2—Н2В	109.1	C1 ⁱ —C1—H1B	109.4
Н2А—С2—Н2В	107.8	C2—C1—H1B	109.4
С6—С7—С8	119.32 (19)	C1 ⁱ —C1—H1A	109.4
С6—С7—Н7	120.3	C2—C1—H1A	109.4
С8—С7—Н7	120.3	H1B—C1—H1A	108.0
N1-C4-C5	124.96 (19)	O1-C11-H11A	109.5
N1-C4-H4	117.5	O1-C11-H11B	109.5
С5—С4—Н4	117.5	H11A—C11—H11B	109.5
01—C8—C9	115.75 (17)	O1—C11—H11C	109.5
O1—C8—C7	124.70 (18)	H11A—C11—H11C	109.5

C9—C8—C7	119.55 (18)	H11B—C11—H11C	109.5
C7—C6—C5	121.71 (18)	C8—C9—C10	120.61 (19)
С7—С6—Н6	119.1	С8—С9—Н9	119.7
С5—С6—Н6	119.1	С10—С9—Н9	119.7
N1—C3—C3 ⁱ	109.94 (14)		
C3—N1—C4—C5	-179.41 (17)	C4—N1—C3—C3 ⁱ	-112.3 (2)
C10-C5-C4-N1	-175.8 (2)	C4—N1—C3—C2	124.6 (2)
C6—C5—C4—N1	6.0 (3)	C1—C2—C3—N1	175.80 (18)
C11—O1—C8—C9	-179.9 (2)	C1—C2—C3—C3 ⁱ	53.7 (3)
C11—O1—C8—C7	0.1 (3)	C6—C5—C10—C9	-0.6 (3)
C6—C7—C8—O1	-179.97 (18)	C4—C5—C10—C9	-178.92 (19)
C6—C7—C8—C9	0.0 (3)	C3—C2—C1—C1 ⁱ	-54.7 (3)
C8—C7—C6—C5	-0.1 (3)	O1—C8—C9—C10	179.73 (18)
C10-C5-C6-C7	0.4 (3)	C7—C8—C9—C10	-0.3 (3)
C4—C5—C6—C7	178.64 (18)	C5—C10—C9—C8	0.6 (3)
Symmetry codes: (i) $-x+1/2, -y+1/2, z$.			

